

10

Events

Contents Index
Reference Manual 10-1

The Events ConÞguration features allow you to set up tests that collect
information about your UNIX systems that you can use to assist in
tasks such as system tuning, load balancing, resource planning, and
upgrade analysis. This chapter describes the basics of building testtab
Þles. For an overview of events capabilities and features and
information about using the Events ConÞguration window (Figure
10-1) to add, modify, and delete tests using the Events graphical user
interface, refer to Chapter 5, ÒMonitoring the Network,Ó in the
ENlighten/DSM User Guide.

ENlighten/DSM

10-2

Figure 10-1 Events Configuration

Events is a distributed systems management feature that provides for
the unattended monitoring of your UNIX systems. It provides
extensive automated data collection for use by both local System
Administrators and Network Managers. Events can help you predict
when a problem is about to occur, where it will occur, and report the
event while taking user-deÞnable corrective action.

How EVENTS Works

You can use the data collected by Events to assist in tasks, such as:

¥ System Tuning

¥ Load Balancing

¥ Resource Planning/JustiÞcation

¥ Upgrade Requirement Analysis

Events collects this data by monitoring the following:

¥ Memory Subsystems

¥ Individual Files

¥ Directory Queues

¥ File Systems

¥ Printer Queues

¥ Critical Processes

Events

¥ Network Statistics

¥ Hardware Inventory

¥ Software Inventory

¥ User Provided Data

An appropriate message can be sent to Network Managers, System
Managers, or both when an alarm condition occurs. Events can send

Reference Manual 10-3

alarms using one or more of the following methods:

¥ as SNMP (Simple Network Management Protocol) trap
messages

¥ as email

¥ as PEP (Programmable Events Processor) messages

Events can also pass the alarm to a process youÕve deÞned for possible
corrective action. You can specify the same process for all tests or a
separate process for each test.

Inventory Tracking

One of the unique features of Events is its hardware inventory tracking
mechanism. At system start-up, Events assembles an inventory record,
including hard disks, tape drives, RAM, network interfaces, and
software where applicable. If a list exists from a previous start-up, then
the two lists are compared. Additions and deletions are reported via
email and to the EMD.

On most systems, Events also includes a software inventory. The
software inventory process is done similarly to the hardware
inventory tracking mechanism. You can set how frequently the
software inventory is generated in the testtab Þle. See ÒThe testtab
FileÓ on page 10-10 for more details.

ENlighten/DSM

Communications

Events communicates to SNMP management systems via SNMP.
As an SNMP agent, Events initiates error messages and alerts, and
provides information to the SNMP management system. By
responding to inquiries from the SNMP management system,
Events makes workstation monitoring an interactive process.

10-4

Practical Use

For the System Manager, Events is a process that runs in the
background and looks after the system. The System Manager can
specify whether or not measured values are stored to a database, who
should be notiÞed if a test fails, and how to notify someone when a test
fails for each test that is performed. Also, other tests can easily be
added to the built-in tests suite.

For the Network Manager, Events is an SNMP agent that emits
enterprise-speciÞc traps to notify the appropriate Network Manager of
a failed test condition. All tests are manageable via SNMP. MIB II
(Management Interface Base) is also supported.

Alarm Thresholds

Each Events test measures some numeric value. It is easier to Þgure
out which alarm threshold is the most appropriate if you know what
the value represents. The following examples use tests that are the
most often misunderstood.

The paradigm is:

1) Select a test.

2) If there is an alarm threshold speciÞed or if logging is enabled:

¥ Execute the test (go and count something).

¥ Log the count if it changed signiÞcantly from the last
logged value.

¥ Compare the count with each alarm threshold.

¥ Send alarms if any of the thresholds were exceeded.

3) Schedule the time of the next test.

Events

File Clamping

This test looks in ASCII log Þles for the recent addition of message
types you have deÞned. Though an alarm message may contain text
from the monitored Þle, the alarm itself is not the message text; itÕs the
number of offending messages found.

Since the test value (count) is the number of messages found (regular

Reference Manual 10-5

expression matches), you must set one of the alarm thresholds if you
desire an alarm. By setting the High Level limit equal to one, an alarm
occurs every time an offending message is found.

File Accessed

This test checks the time stamp associated with the Þle. The time
stamp is actually a number. If the number increases, the Þle has been
accessed. The number should never decrease. A decrease in value
would be suspicious and may indicate a security breach.

Process Instances

This test counts the number of processes containing the same name
that are running.

Process Size

This test looks at the size of the processes youÕve speciÞed. If more
than one process of the speciÞed name is found, only the size of the
last process found is reported.

Components

Events consists of the following parts:

¥ AgentENLÑAn SNMP Agent for sites not currently running a
multi-MIB SMUX (SNMP Multiplexer) compliant agent.

¥ AgentMonÑA subagent required for each workstation you
want to monitor.

¥ EventsCliÑA command line interface syntax to the Events
management framework. You can use this to generate events
from your third-party applications.

ENlighten/DSM

Component Relationship

AgentMon performs all tests. When an alarm condition occurs,
AgentMon may notify someone via traditional methods, such as email
speciÞed by the local user, and/or it may also notify network
management via an enterprise-speciÞc SNMP trap.

AgentENL is an interface between the AgentMon SubAgent and the

10-6

network management application, such as SunNet Manager or HP
OpenView. AgentENL must be started before AgentMon starts, even if
you do not intend to use the SNMP interface.

You can also use EventsCli with any current monitoring scripts and
programs to handle any special needs that AgentMon canÕt cover. By
calling EventsCli from the alarm notiÞcation section of your script,
you gain much greater ßexibility and control over how the alarm is
treated. EventsCli will send an SNMP trap, it will log the alarm to the
EMD, and it will notify PEP of its activity. Refer to Appendix F,
ÒEvents Commands,Ó for more information.

Standards Compliance

Events complies with the following Internet standards:

RFC 1155 Structure and identiÞcation of management
information of TCP/IP-based internets: MIB-II

RFC 1157 Simple Network Management Protocol (SNMP)

RFC 1212 Concise MIB deÞnitions

RFC 1213 Management Information Base for network
management of TCP/IP-based internets: MIB-II

RFC 1215 Convention for deÞning traps for use with
the SNMP

RFC 1227 SNMP MUX (SMUX) protocol and MIB

Events

Configuration

Events has three different types of stored tests you can conÞgure:

1) Group Tests

Each of these tests is predeÞned with a purpose and a name,
such as

cpu load

,

cache_usr

, or

kernel_traps

. See ÒGroup TestsÓ

Reference Manual 10-7

on page 10-13 for more information.

2) Item Tests

These tests are File, Directory, and Processes. Each of these
three tests types is predeÞned with a purpose and may have
further subcategories of tests. Each test name will be the name
of the particular item being tested.

You can have as many of each of the three types of tests as you
want. For example, you could have 18 File tests, 24 Directory
tests, and 26 Processes tests. See ÒItem TestsÓ on page 10-32 for
more information.

3) API Tests

There are six of these tests; each is predeÞned with a name and
nothing else. You can use these test names, api1 through api6, to
create your own tests with shell scripts, SQLs, or even
compiled programs, and incorporate them into Events. See
ÒAPI TestsÓ on page 10-37 for more information.

Configuring Tests

All the information that comprises an Events test is described in (a Þle
called) the testtab Þle as an entry. Each entry must begin with a test
name, and the subsequent lines must contain the testÕs parameters.
Tests are not required to have any associated alarm thresholds; you
may, for instance, want to enable logging.

A test is ignored if:

¥ there are no alarm thresholds and/or

¥ logging is not enabled.

ENlighten/DSM

You can disable a test by using the

off

 parameter. AgentMon modiÞes
the

testtab

 Þle whenever the conÞguration is changed via SNMP or
the Events GUI.

If the default testtab values are acceptable, the simplest test entry need
only contain the following:

¥ a valid test name AND

10-8

¥ an alarm threshold or the logging is enabled.

Tests, or entries, can be added, modiÞed, or deleted using any editor or
the Events GUI. Try to use the Events GUI where possible. See the
section ÒMonitoring UNIX Systems with EventsÓ in Chapter 5,
ÒMonitoring Your Network System,Ó of the ENlighten/DSM User Guide.

Note: Deleting the entry for a built-in test will not turn the test
off, but merely makes that test run with the default values.
To turn a test off, reconÞgure the entry by changing the on
capability to off.

In reality, the testtab Þle need only contain changes from
the default settings.

Data Logging

Logging to the EMD (Enterprise Management Database) is enabled by
specifying the parameter log for each test from which you wish to
collect data. Also, you can specify a value for delta for each test you
want to log. Logging will then occur if the previously logged value
varies by more than delta units from the current value. Setting
delta=0 results in the measured value always being logged.

+

Events

Delta

You can use

delta

 to set your tests so they monitor more frequently,
log less often, and still not lose any logging information. This is most
useful in one of two situations:

¥ monitoring an object whose value seldom changes

¥ monitoring an object whose value has more precision than

Reference Manual 10-9

a log needs

An example of the Þrst case: Monitoring a Þle that seldom
changes size

With traditional logging (log every measurement), if you monitor this
Þle once per minute and its size changes only once each hour, the other
59 out of 60 loggings are identical. With delta logging, you can
specify that logging should only occur if the value changes
signiÞcantly.

In this case, you could specify you want logging to occur only if the
Þle size changes by one or more bytes (set delta=1). Now the log only
contains the same two critical points (and not the other 58 instances of
the repeated measurement).

An example of the second case: Monitoring an object
whose value has a greater precision than is required

Suppose you are monitoring a ÞlesystemÕs free space and logging the
data so you could later use the data to help predict when to buy
additional storage. If you set delta=1000, then logging will only occur
when the available disk space changes by >1000 units from the
previously logged value. In effect, you are specifying the resolution of
your data.

Alarm Messages

If the test generates an alarm message, logging will always occur (even
if the test has logging disabled). AgentMon also logs itself each time it
is started, restarted (warm start), or normally terminated.

ENlighten/DSM

Automated Corrective Action

You can use a command parameter, which is a pathname, in the

testtab

 entry for a test to perform some automated corrective
activity. The pathname is assumed to be the name of a user-provided
program. When an alarm condition occurs, the named process is
started with the following arguments (listed in order):

10-10

1) Test name

2) Value

3) Unit of measure

4) Alarm type

5) Time of measurement

Examples of corrective action scripts can be found in the subdirectory
$ENLIGHTEN/policy.

You can also include the pep capability in the testtab entry to notify
PEP of the alarm.

The testtab File

The Þle $ENLIGHTEN/config/testtab.hostname contains the entries
deÞning AgentMonÕs current conÞguration. If this Þle does not exist, it
will be created upon start-up. If AgentMonÕs conÞguration is changed
via SNMP or the Events GUI, this Þle will be rewritten to reßect those
changes. If the Þle is manually edited, AgentMon will do a ÒwarmÓ
restart and conÞgure itself in accordance with the new contents.

The rest of this chapter details the basics of building a testtab Þle. You
can also use the Events GUI to easily build and alter the conÞguration
of any of your tests. See the section ÒMonitoring UNIX Systems with
EventsÓ in Chapter 5, ÒMonitoring Your Network System,Ó of the
ENlighten/DSM User Guide.

Events

Configuration File Parameters

Each test, or

testtab

 entry, is composed of a test name and optional
parameters that serve as ÒkeywordsÓ to deÞne the scope and behavior
of the test. The parameters are:

Name Type Default Comment

Reference Manual 10-11

testfreq int 5 Test interval, in minutes.

alarmfreq int 60 Minimum time in minutes
between alarms. For process
monitoring, the default is zero.

command str nonw Pathname of any processes to
start when an alarm occurs.

mailer str /bin/mail Program that will deliver the
alarm if a username was given
for ÔnotifyÕ.

notify str root Where alarms are sent. May be
set to ÕnobodyÕ for no
notiÞcation, except on Solaris
2.x systems.

log boolean false Indicates logging is enabled.
Alarms are always logged.

!log boolean true Turns off logging.

delta int/ßoat 0 If logging is enabled, the most
recent value measured will be
recorded if it differs by at least
this amount from the previous
value.

pep boolean varies Notify PEP when an alarm
occurs.

!pep boolean varies Do not notify PEP when an
alarm occurs.

ENlighten/DSM

The following is an example test entry using some of these parameters.

cpu load |:\
:on:testfreq=1:alarmfreq=60:mailer=/bin/mail:notify=root:log:\
:high=5.0:units=units:delta=50:pep:command=/policy/myproc:\
:/* end cpu load */:

Refer to Appendix G, ÒSample Events Files,Ó for a sample of a
10-12

complete testtab Þle.

Alarm Set Points

Alarm set points are ÒkeywordsÓ used in the testtab Þle to set alarm
thresholds. An alarm set point can be speciÞed as an absolute set
point, a percentage change, or as an incremental set point. AgentMon
checks the conditions and sends alarms based on the following order
of precedence:

Name Type Default Comment

high int/ßoat 0 Absolute set pointÑhigh-level alarm
set point.

low int/ßoat 0 Absolute set pointÑlow-level alarm
set point.

+rate ßoat 0.0 Percent change set pointÑpositive
rate change set point.

-rate ßoat 0.0 Percent change set pointÑnegative
rate change set point.

+jump int/ßoat 0 Incremental set pointÑpositive shift
set point.

-jump int/ßoat 0 Incremental set pointÑnegative shift
set point.

age int 0 For monitoring directory queues
only, in minutes.

Events

Most tests measure integer values; others measure ßoating point
values. Set point parameters should be given by using the same
variable type as the test result. Failure to do so, however, will only
result in rounding errors.

The jump and rate thresholds compare the current test value with the
last measured value (change over time). For process monitoring, the
process built-in Þrst/last alarm is checked Þrst, then the alarm set
Reference Manual 10-13

points are checked in the order listed in the preceding table (see
ÒProcesses TestsÓ on page 10-36 for more details).

Group Tests

This section describes all the modiÞable tests that can appear in the
testtab file. Each test name is listed with the corresponding Events
MIB Group name and a brief description.

Refer to Appendix H, ÒO/S Compatibility,Ó to determine if any
particular test is supported on your operating system.

ENlighten/DSM

General Tests

The following table shows the general Events tests. These tests are
only available to SNMP-based network management software.

Test
Name MIB Group Description
10-14

N/A Limits This group is accessed via your NMS
(Network Management Software) and
allows the network manager to turn tests on
or off, adjust alarm thresholds, and control
data logging. Changes made in this group
take effect immediately and become part of
AgentMonÕs new start-up conÞguration. If
an item does not appear in the limits group,
then the network manager cannot edit it via
the NMS.

The path for perspective is:

testtab file > limits group > NMS
GUI > Network Manager

N/A TrapManage The SNMP protocol used by AgentMon and
many NMS applications deÞnes an alarm
messaging facility called TRAPs. AgentMon
has several traps and allows the network
manager to enable and disable them.

Changes made in this group take effect
immediately and become part of
AgentMonÕs new start-up conÞguration.

Events

O/S Tests

The following table shows the O/S tests.

Test
Name

MIB
Group Description

cpu load OS CPU load average, one minute average.
Reference Manual 10-15

This shows the average number of jobs in
a run queue.
Default Alarm: high=5.0

This is a relative indication of how busy the
system is. Some slowness in system response
may be noticed when the load exceeds a
value of approximately 5.0. Interactive use,
like editing, can become aggravating when
loads are heavy. A low value of cpu load
factor is preferred. No value is too low. A
high value indicates that the system is being
overworked. The most common causes are:

¥ Too many people logged on
¥ One or more CPU intensive programs

running
¥ System needs more RAM
¥ Something causing an excessive number

of interrupts

When any cpu load alarm threshold has been
breached, a TRAP PDU will be sent to the
Network Management System (NMS) if the
NMS has SET this trap to ENABLE (see the
TrapManage Group). The TRAP message
will include the current value of cpu
load factor.

cpu user OS Percentage of time spent handling user
processes.

cpu idle OS Percentage of time the CPU is idle.

ENlighten/DSM

cpu kernel OS Percentage of time spent handling system
processes.

cpu wait OS Percentage of time spent waiting for I/O
procedures to complete.

Test
Name

MIB
Group Description
10-16

The following OS Group tests may be of occasional usefulness to
your local UNIX performance expert and can also be an excellent
troubleshooting aid for certain kinds of problems. These tests do
not normally need to be active.

Test
Name

MIB
Group Description

kernel_cxt OS Number of kernel context switches since
the last reboot.

kernel_traps OS Number of kernel traps since the
last reboot.

kernel_syscalls OS Number of kernel mode system calls
made since the last reboot.

kernel_devints OS Number of device interrupts since the
last reboot.

forks OS Number of Forks since the last reboot.

vforks OS Number of VForks since the last reboot.

fork_pages OS Number of Forked Pages since the
last reboot.

vfork_pages OS Number of VForked pages since the
last reboot.

Events

File System Tests

The following table shows the File System tests.

Test
Name

MIB
Group Description

/<fs> File Amount of free space on each logical
Reference Manual 10-17

blocks free

where <fs>
is a File
System
name

System (partition) disk drive. For example:
/usr blocks free

For each Þle system, the default low
threshold limit for blocks free value is set to
10% of that Þle systemÕs size (in 512-byte
blocks). Blocks free refers to the number of
blocks available on the disk. There will be
as many tests as there are Þlesystems.
These tests are created dynamically.

Each Þlesystem is automatically discovered
at program start-up time. Alarm thresholds
are also automatically computed. Since
near-full disks are typical, the default
low-level limit for this test will be adjusted
if the Þlesystem is already in an alarm
condition at installation.
When the amount of free space has
breached an alarm threshold, a TRAP PDU
will be sent to the NMS if the TRAP for that
particular Þlesystem has been ENABLED
(see the TrapManage Group).

ENlighten/DSM

/<fs>
inodes free

where <fs>

File
System

Maximum number of new Þles that can be
added to the disk. For example:

/usr inodes free

For each Þlesystem, the default low

Test
Name

MIB
Group Description
10-18

is a File
System
name

threshold limit for inodes free is set equal
to 10% of the total allocated for that system.
Since near-full disks are typical, the default
low level-limit for this test will be adjusted
if the Þlesystem is already in an alarm
condition at installation.

When the number of free inodes has
breached an alarm threshold, a TRAP PDU
will be sent to the NMS if the TRAP for that
particular Þlesystem has been ENABLED
(see the TrapManage Group).

Events

Printer Tests

The following table shows the Printer test.

Test
Name

MIB
Group Description

printers Printer Reports changes in printer status for each
Reference Manual 10-19

monitored printer. By default, only local
printers are monitored.

An alarm will be sent each time the monitored
printer changes state. Some printers are smarter
than others, so an alarm could consist of
anything from Ònot printingÓ to Òout of toner.Ó
At start-up time for AgentMon, printers are
automatically discovered and the tests are
automatically conÞgured. When the status of a
printer changes state, a TRAP will be sent if the
NMS has ENABLED the trap for that particular
printer (see the TrapManage Group). The TRAP
message will include the printerÕs name and a
description of the new status.

For SunOS 4.1.3 only: To monitor a remote
printer, the printer must be deÞned in
/etc/printcap and contain the boolean
capability: ÒenlightenedÓ.

ENlighten/DSM

Process Tests

The following table shows the Process test.

Test
Name

MIB
Group Description

proc_slots Process Number of additional processes that may be
10-20

started. The default low-level alarm
threshold for this is set to a value equivalent
to 20% of the total number of process slots
for which your kernel was conÞgured.

This test refers to the maximum number of
new processes, applications, and programs
that can be started (assuming other adequate
resources exist). At program start time,
AgentMon computes an alarm threshold
based on your systemÕs resources. A large
number indicates you have relatively few
programs running and can have many more
started. A small number, especially one that
became small quickly, could indicate a
problem is developing.

When this alarm occurs, you must act
quickly to Þnd the cause before the number
of available slots reaches zero. When the
number of available slots reaches zero, there
is nothing to do but reboot. Even the
simplest commands will fail to load.

When the number of available slots breaches
the alarm threshold, a TRAP PDU will be
sent if the NMS has ENABLED this trap. The
TRAP message includes the current number
of available slots.

Events

Inventory Tests

The following table shows the Inventory tests.

Test
Name

MIB
Group Description

hardware Inventory At start-up, an inventory list of the host
Reference Manual 10-21

machine is made. This is a list of display
strings listing the hardware items found in
the kernel at boot time. Each listed item is
a device name followed by a description.
The list of hardware is stored in the
text Þle
$ENLIGHTEN/data/hardware.hostname/
inventory.

For each start-up, a new list is made and
compared to the previous one, if it exists.
Whenever the current inventory list
differs from the previous list, an alarm
message is issued indicating the detected
hardware addition(s) and/or
subtraction(s). There are no alarm
thresholds or TRAPS associated with
this group.

This test cannot be turned off.

The following are example inventory Þles.

For SunOS:

mach: Sun 4/40 ID# 289102334
sdo: sd0: Hard Disk, 3662 RPM, Intrlv

1:1 450Mbytes
zso: zs0: Serial com chip (Zilog 8530)
RAM: RAM: 8335360 bytes
OS: sunOS 4.1.3

ENlighten/DSM

hardware
(contÕd)

Inventory For HP/UX:

CPU
FPU

Test
Name

MIB
Group Description
10-22

RPC Tests

The following table shows the Remote Procedure Call (RPC) tests.
These tests report various types of errors that can occur with the RPC
protocol. This information is not normally required, but can be very
useful when tracing network problems related to RPCs. Alarm
thresholds may be set for each test, but there are no TRAPs associated
with them.

CORE-GRAPHICS-L on
/dev/diag/crt100
CORE-SCSI
SEAGATETEST11200N on
/dev/diag/dsk/c201d6
CORE-LAN on /dev/diag/lan202
CORE-RS232-1
CORE-CENT
CD-NB-AUDIO
PC-FLOPPY-INTERFACE
FD235HG on /dev/diag/pcßpyc20ad1
CORE-PS2-1
CORE-PS2-2
RAM: 33554432 bytes
OS: HP-UX A. 09.05
IP: 129.1.2.130

software Inventory Similar to hardware, but only detects
software installed by ÔcustomÕ and/or
ÔpkgaddÕ.

This test can be run periodically. It can
also be turned off.

Events

Your local network specialist and O/S provider can provide more
speciÞc information about these tests. SpeciÞcs vary from O/S to O/S
and most O/Ss do not support everything on this list.

Note: The RPC statistics are not available on HP/UX.+
Reference Manual 10-23

Test Name MIB
Group Description

rpcc_calls RPC Number of client RPC calls since the
last reboot.

rpcc_badcalls RPC Number of bad client RPC calls since the
last reboot.

rpcc_retrans RPC Number of client RPC retransmissions
since the last reboot.

rpcc_badxid RPC Number of unexpected packets received
(client).

rpcc_timeout RPC Number of timeouts (client) since the last
reboot.

rpcc_wait RPC Number of client waits since the
last reboot.

rpcc_newcred RPC Number of times client authentication
refreshed since the last reboot.

rpcc_timers RPC Number of client timers.

rpcs_calls RPC Number of server calls received since the
last reboot.

rpcs_badcalls RPC Number of server calls rejected since the
last reboot.

rpcs_nullrecv RPC Number of server calls not available,
though received.

ENlighten/DSM

rpcs_badlen RPC Number of server truncated packets
received since the last reboot.

rpcs_xdrcall RPC Number of server undecodable headers
since the last reboot.

Test Name MIB
Group Description
10-24

VM Tests

The following table shows the Virtual Memory (VM) tests. The virtual
memory system uses a portion of disk, called SWAP, as though it were
RAM memory. Virtual memory is organized into Òpages,Ó typically
4096 bytes per page. This size varies greatly from system to system.

A machine that frequently runs out of virtual memory often requires
more RAM. Another solution may be to off-load some of its work to
other, less burdened systems. When the number of available virtual
memory pages breeches an alarm threshold, a TRAP will be sent to the
NMS if the NMS has ENABLED this trap (see the TrapManage Group).
The TRAP message includes the current number of pages free.

Note: The VM group is not available on HP/UX systems.+

Events

Test
Name

MIB
Group Description

vm_locked VM Number of virtual memory pages currently
locked. The default alarm is:
Reference Manual 10-25

the high limit is set to an integer value
equal to 80% of the total number of pages
on your system.

Special note for SCO systems:

This is initially set to ((total memory+total
swap) -vmClaimed). This indicates the
amount of free pages for user page storage.

As this value nears zero, processes begin to
fail as the malloc() and calloc() system calls
refuse new memory allocation requests.

vm_claimed VM Number of virtual memory pages claimed.

Special note for SCO systems:

This tracks the number of memory pages
not currently Òlocked down.Ó This
represents all of memory minus whatever
the kernel is using.

Typically, this value starts at some value
and then decreases slightly for awhile. If it
continues to decrease, or decreases by a
large increment, then there is probably a
memory leak in the kernel or in a
device driver.

ENlighten/DSM

vm_free VM Number of free vm blocks (30-second
moving average).

Special note for SCO systems:

Test
Name

MIB
Group Description
10-26

This represents the number of memory
pages not currently in use. If it is large, then
little RAM is being used. If it is near zero,
then the system is having to use swap
space.

cache_ctx VM Number of Ctx Cache ßushes since the
last reboot.

cache_seg VM Number of Segment Cache ßushes since
the last reboot.

cache_pag VM Number of Page Cache ßushes since the
last reboot.

cache_par VM Number of Partial Page Cache ßushes since
the last reboot.

cache_usr VM Number of User Cache ßushes since the
last reboot.

cache_reg VM Number of Region Cache ßushes since the
last reboot.

Events

MBUF Tests

The following table shows the MBUF tests. These tests refer to the BSD
UNIX buffer monitoring group. This group is not supported on
System V based Operating Systems.
Reference Manual 10-27

Note: The mbufs and mbuf_drain tests are not supported by
HP/UX systems.

Test Name MIB
Group Description

mbufs MBUF Current number of mbufs obtained from
the page pool.

mbuf_clusters MBUF Number of mbuf clusters obtained from
the page pool.

mbuf_clfree MBUF Number of free clusters.

mbuf_drops MBUF Number of times failed to Þnd space.

mbuf_space MBUF Number of interface pages obtained from
the page pool.

mbuf_wait MBUF Number of times waited for space.

mbuf_drain MBUF Number of times drained protocols
for space.

mbufs MBUF Current number of mbufs obtained from
the page pool.

+

ENlighten/DSM

Ncache Tests

The following table shows the Ncache test. This test refers to the Name
Cache, which is another memory subsystem. Its size is tunable on
some versions of UNIX.

The size of this cache, like any cache, will affect its hit/miss ratio and,
to a lesser degree, its purge frequency. Adjusting the size of your name
10-28

cache may require recompiling the kernel and is not recommended.
You can also use alarm thresholds and data logging to verify that any
changes in size had the desired result.

MIB II Tests

This section details the MIB II objects AgentMon can manage.

System Group

This group is used to store basic information about the workstation,
who should be contacted, the systemÕs location, and other
administrative details.

Note: For Solaris 2.x, only the systems group is implemented. The
network statistics normally available on other O/Ss are not
available on Solaris.

Interfaces Group

These groups list the various network interfaces and information
relevant to their current state. They contain various statistics for the
different networking protocols that are in use on the workstation.

Test
Name

MIB
Group Description

ncache Ncache Percent of name cache misses.
SpeciÞcally: misses/(hits+misses)

+

Events

The information in these groups can help pinpoint host-based network
problems, aid in bandwidth utilization, and assist in resource
planning. The groups include:

¥ IPÑthe Internet Protocol

¥ ICMPÑthe Internet Control Message Protocol

¥ TCPÑthe Transmission Control Protocol
Reference Manual 10-29

¥ UDPÑthe Unreliable Datagram Protocol

¥ SNMPÑthe Simple Network Management Protocol

¥ Transmission groupÑshows current network connections

Typically, these groups contain:

¥ the number of packets (and/or bytes) sent and received

¥ the number of packets that were bad for various reasons

¥ the number of protocol errors

The following table shows which MIB II tests AgentMon can manage.

Test Name MIB
Group Description

ip_total MIB II Total IP packets received.

ip_badsum MIB II Total IP packets having the wrong
checksum.

ip_tooshort MIB II Number of IP packets that were
Òtoo short.Ó

ip_toosmall MIB II Number of IP packets that were
Òtoo small.Ó

ip_badhlen MIB II Number of IP headers having a bad
length.

ip_badlen MIB II Number of IP packets of wrong length.

ip_fragments MIB II Number of fragmented IP packets.

ip_fragdropped MIB II Number of IP fragments discarded.

ip_fragtimeout MIB II Number of timeouts waiting for an
IP fragment.

ENlighten/DSM

ip_forward MIB II Number of IP packets forwarded.

ip_cantforward MIB II Number of IP packets that could not be
forwarded.

Test Name MIB
Group Description
10-30

ip_redirectsend MIB II Number of redirected IP packets.

icmp_error MIB II Number of ICMP errors since the
last reboot.

icmp_badcode MIB II Number of ICMP packets having an
unknown icmp code.

icmp_tooshort MIB II Number of short ICMP packets
received.

icmp_checksum MIB II Number of ICMP packets having a
wrong checksum.

icmp_badlen MIB II Number of ICMP packets having a bad
length.

icmp_reßect MIB II Number of ICMP packets received.

tcp_psent MIB II Number of TCP packets sent since the
last reboot.

tcp_bsent MIB II Number of TCP bytes sent since the last
reboot.

tcp_pgot MIB II Number of TCP packets received since
the last reboot.

tcp_bgot MIB II Number of TCP bytes received since
the last reboot.

tcp_dropped MIB II Number of TCP connections dropped
since the last reboot.

udp_badhead MIB II Number of udp packets that arrived
with bad headers.

Events

udp_badsum MIB II Number of udp packets that arrived
with a wrong checksum.

udp_badlen MIB II Number of udp packets that arrived
with a bad length.

Test Name MIB
Group Description
Reference Manual 10-31

udp_overßow MIB II Number of udp socket overßows that
have occurred.

ENlighten/DSM

Item Tests

The Group and API built-in tests have static names and functionality.
ENlighten also provides support for certain types of additional tests
you can deÞne. These tests are File, Directory, and Processes tests.

Each of these three tests types is predeÞned with a purpose and may
have further subcategories of tests. You can have as many of each of
10-32

the three types of tests as you want; each test name will be the name of
the particular item being tested.

The following list shows the types of these ÒitemÓ tests and their
associated naming conventions:

¥ File size

The test will monitor the size of the speciÞed Þle, for example,
/myfile size. Use this to monitor the many files that are
allowed to grow without bound. See the Þle example1.sh and
the command capability for one possible way of automating
corrective action for Þles that get too big.

¥ File accessed

Use this test to monitor any Þles that have been read, for
example, /myfile accessed.

¥ File modiÞed

Use this test to monitor any Þles that have been modiÞed, for
example, /myfile modified.

¥ File clamped

Use this test to monitor logÞles for speciÞc message types that
you deÞne, for example, /myfile clamped.

Events

¥ Directories

If a test name refers to a directory, the test will monitor the
number of Þles in the directory. This can be used with an alarm
set point to provide notiÞcation of a queue that is Þlling.
Another possibility would be to use the data to show how
queues Þll and empty throughout the day.
Reference Manual 10-33

If the age = parameter is speciÞed, then only Þles more than
age minutes old will be counted.

¥ Processes instances

A test name preceded by an exclamation point (Ò!Ó) is assumed
to refer to a process. Alarm thresholds can be used to issue
notiÞcation when the process is started, stopped, or if the
number of instances of the process changes.

¥ Processes size

This test monitors the size of the named process in pages of the
swappable processÕs image in main memory.

¥ Processes time

This test monitors the total amount of CPU time used by
the process.

File Tests

This section details the File subcategory tests. When the Þle size has
breached an alarm threshold, a TRAP PDU will be sent to the NMS if
the NMS has ENABLED the TRAP associated with that Þle. To create a
test entry in the testtab Þle, enter the full pathname to the particular
Þle you want AgentMon to monitor.

File Size

You can use the Þles group to monitor Þles. Since many UNIX Þles can
grow without bound, AgentMon provides a method of automatically
archiving, truncating, or otherwise averting a Þle size problem. For
example, monitoring the size of sulog and other system Þles could aid
in preserving the security of your system.

ENlighten/DSM

For example:

/opt/ENLIGHTEN/agent/history.pizza size| :\
:on:testfreq=1:alarmfreq=60:\
:command=/opt/ENLIGHTEN/example.sh:\
:!log:high=1000000:units=bytes:\
:/*end /opt/ENLIGHTEN/agent/history.pizza */:
10-34

If a test name is a full pathname and it does not refer to a directory, the
test is assumed to refer to a Þle of the same name. The size of the Þle is
then monitored and compared with alarm thresholds. If the named Þle
does not exist, the test is ignored (until the Þle does exist).

File Accessed

You can also test if the Þle was accessed.

For example:

/etc/shadow accessed | :\
:on:testfreq=1:alarmfreq=1:log:delta=1:\
:+jump=1:
:/*alarms if anyone reads the file */:

File Modified

Use this test to send an alarm if a Þle was modiÞed.

For example:

!/usr/adm/sulog modified | :\
:on:testfreq=1:+jump=1:\
:/*end /usr/adm/sulog modified */:

File Clamped

This test evaluates any recent additions in ASCII logÞles to matches in
the regular expressions regx1 - regx32. An alarm is generated if one or
more of the regular expressions match one or more of the ÒnewÓ log
entries. A ÒnewÓ entry is any entry added to the log since this test was
last run.

Events

For example:

/usr/adm/sulog clamped| :\
:on:testfreq=5:alarmfreq=5:\
:regx1 = (root)*(fail)*:high=1: \
:/*end /usr/adm/sulog clamped */:

Directories Tests
Reference Manual 10-35

The directories group is used to monitor the number of Þles in a
directory. The directory may be a print queue, an email queue, or any
other queue where Þles in transition are temporarily stored. An
individual queue can be monitored by watching the number of Þles
and/or by watching the number of ÒoldÓ Þles.

Since queues are bottlenecks, it can become a problem if the number of
Þles becomes large because this could then also lead to a shortage of
disk space. An email queue that has many old Þles could mean that a
remote site is no longer reachable.

When the number of Þles in a queue breaches an alarm threshold, a
TRAP PDU will be sent to the NMS if the NMS has ENABLED the trap
associated with that queue. The TRAP message will contain the name
of the queue and the number of (old) Þles in it.

To create a test entry in the testtab Þle, use the full pathname of a
directory as the test name. Then the number of Þles in that directory is
tracked. By setting a high alarm threshold, you can be notiÞed when
queues are getting too big (backlogged).

For example:

/usr/spool/ps|:\
:on:testfreq=5:alarmfreq=60:mailer=/bin/mail:\
:age=5:notify=root:!log:high=20:units=old_files:\
:/*end /usr/spool/ps */:

Since some queues have accounting Þles (and other non-queued Þles)
in the queue directory, be sure to consider their number when setting
alarm thresholds. If the named directory does not exist, the test is
ignored. If the test description for this test contains the age parameter,
then only Þles more than age minutes old will be counted.

ENlighten/DSM

Processes Tests

The processes group measures the number of currently running
processes having the speciÞed name. Given a list of processes and
alarm thresholds, AgentMon can tell you when your daemons die,
your programs terminate, when you donÕt have enough instances of a
program running, how long a process has been executing, and the
amount of memory a process has consumed.
10-36

In addition to the usual six types of alarms, two others are available:
Þrst instance started and last instance terminated. This means if you
are monitoring a process called ABC, an alarm will occur when the
Þrst instance of ABC starts up, and when the last one terminates.

For each named process, a TRAP PDU will be sent if an alarm
threshold for that process is breached and if the NMS has ENABLED
the corresponding trap. The TRAP message will include the name of
the process that went into the alarm condition and the number of
processes with the same name that are currently running.

Note: On BSD ßavors of UNIX, you must specify the real process
name, that is, the name returned by the ps -c command.

Processes Instances

To create a test entry in the testtab Þle, enter the process name
(preceded by an exclamation point (!)) you want AgentMon to
monitor.

For example:

!syslogd instances|:\
:on:testfreq=5:mailer=/bin/mail:notify=root:!log:\
:units=process(es):+jump=1:-jump=1:\
:/*end!syslogd*/:

+

Events

An alarm will be issued if any of the following are true:

¥ The named process starts and no other processes by that name
were previously running (Þrst instance start-up). This is
enabled Þve minutes after AgentMon starts up to prohibit
alarm at reboot time.

¥ The named process terminates and there are no other currently
Reference Manual 10-37

running processes having the same name.

¥ There is more than one instance of the named process running,
and the number of instances changes by more than some
user-speciÞed alarm threshold (low limit, high limit, etc.).

Processes Size

This test monitors the size of the named process.

Processes Time

This test monitors the total amount of CPU time used.

API Tests

In addition to the many built-in tests, AgentMon also has six
general-purpose test names you can use for tests you create. You can
write the tests using any shell script or SQL, or you can use a compiled
program. You can use any method you want.

All you have to do is have the test write results to an ordinary ASCII
Þle. The Þle may contain many columns of data and many data
records. AgentMon will watch the data, compare it to the alarm
thresholds you have set, and notify you of any faults.

Designing an API Test

To use the API tests, follow these steps:

1) Write a script or program that will collect the data, for example:

ls -l /usr/spool/mail > mydata

2) Edit the crontab Þle to make your script run periodically.

ENlighten/DSM

3) Use the Events menu in the Combo GUI or edit the testtab
Þle directly and deÞne a NEW test. You can chose from the
following names:

¥ api1

¥ api2

¥ api3
10-38

¥ api4

¥ api5

¥ api6

4) The ÒapiÓ tests are set up just like any other test, except they
have three additional Þelds. These Þelds are:

¥ Þlename

SpeciÞes the full pathname of the Þle where your test
writes data.

¥ data

SpeciÞes which Þeld or column the data is in. The value
assigned is a digit prefaced by either an ÔfÕ for Þeld number
or a ÔcÕ for column number. In the absence of a qualiÞer, the
default is ÔfÕ for Þeld.

The Þeld/column delineator is any blank space. Each
character in a row is considered a column.

¥ label

SpeciÞes the Þeld or column containing a descriptive word
or label.

At each testfreq interval, AgentMon will check the Þle pointed to by
filename to see if its modification time has changed. If the file has
changed, AgentMon will reread it. For each line it reads, AgentMon
will Þnd the value stored in Þeld (column) data and compare it to any
alarm thresholds you have deÞned for this test (api1, api2, ..., api6).

Events

An Example API Test

The following is an example for creating an API Group test.

Scenario: You have several databases and want to know when
one or more begin to run out of space. Have cron
execute a script that will record the free space and
database name to a Þle called dbsizes. Suppose the Þle
Reference Manual 10-39

looks like:

1289 Kbytes parts.db
9023 Kbytes customer.db
389 Kbytes phones.db

You could create the new test with the following additional
parameters:

Test name: api1 (pick any unused API test name)
:file=/dbsizes: (full pathname to Þle holding the data)
:data=f1: (monitor the data in Þeld one (column one if c1))
:label=f3: (the label in Þeld #3 is the database name)
:low=400: (set a low-level alarm at 400 Kbytes)

as shown in the following example:

api1 |:\
:on:file=/dbsizes:data=f1:label=f3:low=400:\
:testfreq=1:alarmfreq=60:\
:mailer=/bin/mail:notify=root:!log:\
:/*end api1*/:

Generating Reports

You can use the Status Map to view all logs and events and the
Query Events function to search for relevant event logs. See Chapter
11, ÒNavigate,Ó to use both of these features.

You can also use SQL to generate Events reports from the EMD.
Refer to your SQL UserÕs Manual for more details.

ENlighten/DSM
10-40

	Events
	How EVENTS Works
	Inventory Tracking
	Communications
	Practical Use
	Alarm Thresholds

	Components
	Component Relationship
	Standards Compliance

	Configuration
	Configuring Tests
	Data Logging
	Automated Corrective Action

	The testtab File
	Configuration File Parameters
	Alarm Set Points

	Group Tests
	General Tests
	O/S Tests
	File System Tests
	Printer Tests
	Process Tests
	Inventory Tests
	RPC Tests
	VM Tests
	MBUF Tests
	Ncache Tests
	MIB II Tests

	Item Tests
	File Tests
	Directories Tests
	Processes Tests

	API Tests
	Designing an API Test
	An Example API Test

	Generating Reports

